Ir al contenido principal

Coordenadas generalizadas

Para poder definir las coordenadas generalizadas debemos hablar de los grados de libertad que tiene un sistema y de las ligaduras, para finalmente dar una definición de coordenadas generalizadas.
¿Qué son los grados de libertad?
Son todas aquellas coordenadas independientes que me permiten especificar completamente la posición de cada uno de los elementos que conforman el sistema (o la configuración del sistema)
¿Qué son las ligaduras?
Las ligaduras son todas aquellas restricciones que impiden el movimiento en un sistema de partículas, luego si no existe ninguna restricción se dice que el sistema es libre, y tiene libertad de movimiento en el espacio; estas se suelen clasificar en reonomas, escleronomas, holónomas y no-holónomas principalmente.
Luego las coordenadas generalizadas básicamente representan el conjunto de coordenadas que pueden describir mejor el problema y tienen implementadas las ligaduras de forma natural, y por lo tanto será el conjunto en las cuáles se representaran las ecuaciones del movimiento.

Comentarios

Entradas populares de este blog

¿Cómo son las ecuaciones de Euler-Lagrange para un sistema de dos resortes y una masa con gravedad? (Resortes en Paralelo)

Si has estado leyendo el blog, te has dado cuenta que vamos desarrollando problemas cada vez más complejos, aunque algunas veces estos se puedan reducir a problemas más sencillos, lo unico diferente que realizamos en estos ejercicios que tienen esa ventaja es presentar el lagrangiano del sistema, los puntos clave de la solución, así como una breve interpretación; en este caso tenemos dos resortes que sostienen una masa, con gravedad: Si te preguntas cuál es la coordenada generalizada para este problema, pues debemos recordar que es aquella por donde se  realiza el movimiento, y el movimiento en ambos sistemas se realiza en el eje $y$, ahora si podemos formular nuestro lagrangiano de la siguiente forma: \[L=\frac{1}{2}m\dot{y}^{2}-\frac{1}{2}k_1y_1^{2}-\frac{1}{2}k_2y_2^{2}+mgy\] Comparando con nuestro sistema desarrollado con resortes en serie , en esta ocasión se efectua una energía potencial total de los resortes, igual a la energía que contribuye cada resorte a la masa.  \[...

¿Cómo son las ecuaciones de movimiento para un sistema de dos resortes y una masa con gravedad con el formalismo de Newton? (Resortes en paralelo)

 Esta vez he decidido cambiar el orden de mostrar las publicaciones, pues como ya lo han visto (o en caso de no verlo los invito a que vean el orden de las publicaciones en el blog, de acuerdo a cada una de las formas de solucionar las ecuaciones del movimiento) que empiezo con un problema sin tener en cuenta la gravedad; y después introducimos la gravedad, para poder ver los resultados que cambian. Ahora si nos dirigimos a nuestro problema que consiste de dos resortes en paralelo que sostienen a una masa, aunque podemos ver dos casos análogos, que tienen la misma solución: Aunque es más claro los resortes en paralelo en el esquema a nuestra derecha, aplicara las mismas ecuaciones de movimiento para la configuración de la izquierda. Es momento de obtener la suma de fuerzas que actúan sobre la masa en el eje $y$: \[\sum F_y:ma=-k_1y_1-k_2y_2+mg\] Pero a diferencia del problema en serie  acá la suma total de fuerzas que actúan sobre la masa es: \[F=F_1+F_2\] Esto la hacemos para...

¿Cómo son las ecuaciones de Hamilton y el espacio de fase para un oscilador armónico en una dimensión?

Esta vez, veremos como es la forma de las ecuaciones de Hamilton, más su solución (de las ecuaciones de movimiento), y además veremos como es el espacio de fase para el resorte en su movimiento armónico. Anteriormente vimos como calcular el hamiltoniano a partir del lagrangiano, lo único que debemos reconocer es el potencial y ya estamos listos para el siguiente resultado: \[H(p_x,x)=\frac{p_{x}^{2}}{2m}+\frac{1}{2}kx^{2}\] Obtenemos las ecuaciones de Hamilton para el problema: \[\dot{p_x}=-\frac{\partial H}{\partial x}\] \[\dot{p_x}=-kx\] \[\dot{x}=\frac{\partial H}{\partial p_x}\] \[\dot{x}=\frac{p}{m}\] De la primera de las ecuaciones de Hamilton se puede obtener la ecuación diferencial del oscilador armónico unidimensional: \[m\ddot{x}=-kx\] Dividimos por $m$ e igualamos a cero: \[\ddot{x}+\frac{k}{m}x=0\] con $\frac{k}{m}=\omega^{2}$ (frecuencia angular)$^{2}$ y llegamos a la ecuación del movimiento: \[\ddot{x}+\omega^{2}x=0\] La solución para está  ecuación dife...