Ir al contenido principal

¿Qué encontraras en este blog?

Me permito darte la bienvenida querido lector, si llegaste a este blog es posible que quieras encontrar alguna solución física para algún problema o problemas en particular.

Para poder conseguir este resultado he decidido explicar algunos conceptos que pueden resultar para entender mejor cada uno de los problemas, estos son:

Principio de relatividad
Coordenadas generalizadas
Teorema de Noether
Principio de equivalencia (Para entender soluciones de problemas con relatividad general)

Además solucionaremos problemas clásicos utilizando el método convencional, el que hemos ido aprendiendo poco a poco, así como las ecuaciones de Euler-Lagrange, Hamilton, Hamilton-Jacobi.

A medida que avancemos con los temas, vamos a solucionar problemas cada vez mas difíciles para ver hasta que punto es posible aplicar estos métodos variacionales, además que vamos a poder aplicar de forma natural y necesaria los métodos matemáticos.
Este ultimo con el fin de ver en la mejor perspectiva, que la física necesita de las matemáticas para poder llegar a los grandes resultados.
La forma de organización de los temas será de acuerdo a las ecuaciones utilizadas (Formalismo de Newton, Euler-Lagrange, Hamilton, Hamilton-Jacobi)  y no respecto a un orden en particular, este enfoque nos permite incluir problemas que tengan varios campos de desarrollo en la física, además de incluir poco a poco problemas mas reales.

Comentarios

  1. Què interesante!
    Me gusta la propuesta, espero ver màs y seguir aprendiendo.
    Èxitos

    ResponderEliminar

Publicar un comentario

Entradas populares de este blog

¿Cómo son las ecuaciones de Euler-Lagrange para un sistema de dos resortes y una masa con gravedad? (Resortes en Paralelo)

Si has estado leyendo el blog, te has dado cuenta que vamos desarrollando problemas cada vez más complejos, aunque algunas veces estos se puedan reducir a problemas más sencillos, lo unico diferente que realizamos en estos ejercicios que tienen esa ventaja es presentar el lagrangiano del sistema, los puntos clave de la solución, así como una breve interpretación; en este caso tenemos dos resortes que sostienen una masa, con gravedad: Si te preguntas cuál es la coordenada generalizada para este problema, pues debemos recordar que es aquella por donde se  realiza el movimiento, y el movimiento en ambos sistemas se realiza en el eje $y$, ahora si podemos formular nuestro lagrangiano de la siguiente forma: \[L=\frac{1}{2}m\dot{y}^{2}-\frac{1}{2}k_1y_1^{2}-\frac{1}{2}k_2y_2^{2}+mgy\] Comparando con nuestro sistema desarrollado con resortes en serie , en esta ocasión se efectua una energía potencial total de los resortes, igual a la energía que contribuye cada resorte a la masa.  \[...

¿Cómo son las ecuaciones de Hamilton y el espacio de fase para un oscilador armónico en una dimensión?

Esta vez, veremos como es la forma de las ecuaciones de Hamilton, más su solución (de las ecuaciones de movimiento), y además veremos como es el espacio de fase para el resorte en su movimiento armónico. Anteriormente vimos como calcular el hamiltoniano a partir del lagrangiano, lo único que debemos reconocer es el potencial y ya estamos listos para el siguiente resultado: \[H(p_x,x)=\frac{p_{x}^{2}}{2m}+\frac{1}{2}kx^{2}\] Obtenemos las ecuaciones de Hamilton para el problema: \[\dot{p_x}=-\frac{\partial H}{\partial x}\] \[\dot{p_x}=-kx\] \[\dot{x}=\frac{\partial H}{\partial p_x}\] \[\dot{x}=\frac{p}{m}\] De la primera de las ecuaciones de Hamilton se puede obtener la ecuación diferencial del oscilador armónico unidimensional: \[m\ddot{x}=-kx\] Dividimos por $m$ e igualamos a cero: \[\ddot{x}+\frac{k}{m}x=0\] con $\frac{k}{m}=\omega^{2}$ (frecuencia angular)$^{2}$ y llegamos a la ecuación del movimiento: \[\ddot{x}+\omega^{2}x=0\] La solución para está  ecuación dife...

¿Cómo son las ecuaciones de movimiento para un sistema de dos resortes y una masa con gravedad con el formalismo de Newton? (Resortes en paralelo)

 Esta vez he decidido cambiar el orden de mostrar las publicaciones, pues como ya lo han visto (o en caso de no verlo los invito a que vean el orden de las publicaciones en el blog, de acuerdo a cada una de las formas de solucionar las ecuaciones del movimiento) que empiezo con un problema sin tener en cuenta la gravedad; y después introducimos la gravedad, para poder ver los resultados que cambian. Ahora si nos dirigimos a nuestro problema que consiste de dos resortes en paralelo que sostienen a una masa, aunque podemos ver dos casos análogos, que tienen la misma solución: Aunque es más claro los resortes en paralelo en el esquema a nuestra derecha, aplicara las mismas ecuaciones de movimiento para la configuración de la izquierda. Es momento de obtener la suma de fuerzas que actúan sobre la masa en el eje $y$: \[\sum F_y:ma=-k_1y_1-k_2y_2+mg\] Pero a diferencia del problema en serie  acá la suma total de fuerzas que actúan sobre la masa es: \[F=F_1+F_2\] Esto la hacemos para...